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Abstract

By shifting the burden of proofs to the user, a proof-carrying authorization (PCA) system
can automatically enforce complex access control policies. Unfortunately, managing those
proofs can be a daunting task for the user. In this paper we develop a Bash-like language,
PCAL, that can automate correct and efficient use of a PCA interface. Given a PCAL
script, the PCAL compiler tries to statically construct the proofs required for executing
the commands in the script, while re-using proofs to the extent possible and rewriting the
script to construct the remaining proofs dynamically. We obtain a formal guarantee that
if the policy does not change between compile time and run time, then the compiled script
cannot fail due to access checks at run time.



1 Introduction

Proof-carrying authorization (PCA) [3,5,6,18,20,22] is a modern access control technology,
where an access control policy is formalized as a set of logical formulas, and a principal is
allowed to perform an operation on a resource only if that principal can produce a proof
showing that the policy entails that the principal may perform the operation on the resource.
While this architecture allows automatic enforcement of complex access control policies, it
substantially increases the burden of the user, since each request to perform an operation
must be accompanied by one or more proofs. Furthermore, even if the user employs a
theorem prover to construct the proofs, the user must still ensure that enough proofs are
generated for each request to succeed, while minimizing the costs of proof construction
at run time. In this paper we develop a programming language that can assist the user
in performing such tasks correctly and automatically in a system with PCA. We have
implemented a compiler for our language and tested it with a PCA-based file system,
PCFS [18].

Our language, PCAL, extends the Bash scripting language with some PCA-specific
annotations; the PCAL compiler translates programs with these annotations to ordinary
Bash scripts, to be executed in a system with PCA. More precisely, PCAL annotations can
specify what proofs the programmer expects to hold at particular program points. Based
on these annotations, the compiler performs the following tasks.

1. It checks that the programmer’s expectations about proofs suffice to allow successful
execution of every shell command in the script. For this, the compiler needs to
know what permissions are required to execute each shell command. We provide this
information through a configuration file.

2. Next, the compiler uses a theorem prover and information about the access control
policy to try to statically construct proofs corresponding to the programmer’s anno-
tations. In cases where static proof construction fails, because the annotations do not
convey enough static information, the compiler generates code that constructs the
proof at run time by calling the theorem prover from the command line.

3. Finally, the compiler adds code to pass appropriate proofs for each shell command to
the PCA interface.

Thus, the output of the compiler is a Bash script which, beyond the usual commands,
contains some code to generate proofs at run time (when it cannot generate such proofs at
compile time), and some code to pass the proofs, generated either statically or dynamically,
to the PCA interface.

Using PCAL offers at least two advantages over a naive approach, where a user generates
and passes to the PCA interface enough proofs of access before running an unannotated
script.

1. Because of the static checks and dynamic code generated by the compiler, it is guar-
anteed that the resulting script will at least try to construct all necessary proofs of

1



access. Thus, the script can fail only if the user does not have enough privileges to
run it, and not because the user forgot to create some proofs. Indeed, we formally
prove that if compilation of a program succeeds and the policy does not change be-
tween compilation and program execution, then the program cannot fail due to an
access check (Theorem 4.2). This is very significant for scripts where the user cannot
determine a priori what operations the script will perform.

2. Since the compiler sees all commands that the script will execute, it re-uses proofs to
the extent possible and reduces the proof construction overhead, which a naive user
may not be able to do. This is particularly relevant for POSIX-like policies where
accessing a file requires an “execute” permission on all its ancestor directories. If
several files in a directory need to be processed, there is no need to construct proofs
for the ancestor directories again and again. The PCAL compiler takes advantage of
this and other similar structure in policies and combines it with information about a
program’s commands to minimize proof construction.

By design, PCAL and its compiler are largely independent of the logic used to express
policies. The compiler requires a theorem prover compatible with the logic used, but it does
not analyze formulas or proofs itself. Thus, the compiler can be (trivially) modified to use
a different logic. Similarly, the compiler is parametric in the shell commands it supports.
It assumes a map from each shell command to the permissions needed to execute it, and
a single command to pass proofs to the PCA interface. By replacing this map and the
command, the compiler can be used to support any PCA interface, not necessarily a file
system.

PCAL is distinct from other work that combines PCA with a programming language [4,
20]. In all such prior work, the language is used to enforce access control statically. On the
other hand, PCAL uses a combination of static checks and dynamic code to ensure compli-
ance with the requirements of the PCA interface. Static enforcement is a special case of this
approach, where an input program is rejected unless the compiler can construct all required
proofs at compile time. Furthermore, in all prior work proofs are data or type structures
and programmers must write explicit code to construct them. In particular, programmers
must understand the logic. In contrast, PCAL separates proofs from programs, and shifts
the burden of constructing proofs (and understanding the logic) from programmers to an
automatic theorem prover. We believe that this not only makes PCAL’s design modular,
but also easier to use.

Contributions

We believe that we are the first to propose, design, and implement a language that uses
a combination of static checks and dynamic code to optimize the proof burden of a PCA-
compliant program. This setting presents some unique technical challenges, and our design
and implementation require some novel elements to deal with those challenges.

1. While we would like to discharge as many proofs as possible statically, we must be
concerned about possibly invalidating the assumptions underlying those proofs at run
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time. For instance, the state of the system may not remain invariant between compile
time and run time. This requires a careful separation of (dynamic) state conditions
from other (static) policies.

2. Since the values of some program variables cannot be determined at compile time, the
PCAL compiler constructs quantified proofs which are parametric over these program
variables. These variables are substituted at run time to obtain ground proofs. (See
Section 5 for details.)

3. Programmer annotations in PCAL have both static and dynamic semantics. Stati-
cally, they specify authorization conditions and other constraints that should hold at
run time, thereby aiding verification of correctness by the compiler. Dynamically, they
verify any assumptions on the existence of authorization proofs and other constraints
made by the compiler, thereby allowing sound optimizations.

4. For practical reasons, we must also be concerned about balancing the relative strengths
and weaknesses of a theorem prover (to discharge proofs) and compiler (to analyze
programs). We achieve such a balance by working at several levels of abstraction.
While all functions and predicates used in a script have concrete implementations at
run time, the compiler only partially interprets these functions and predicates with
abstract rewrite rules, so that the program can be analyzed with appropriate precision
by symbolic techniques. Furthermore, calls to the theorem prover are simplified, so
that the theorem prover can treat all functions and predicates as uninterpreted, and
thus can search for proofs efficiently. Tying these levels of abstraction together requires
some care in the implementation. This is discussed further in Section 5.

5. We prove formally that the behavior of a compiled program is the same as that of the
source program (Theorem 4.1) and that successfully compiled programs cannot fail
due to access checks (Theorem 4.2). The proofs of these theorems require a precise
characterization of assumptions on the theorem prover, the proof verifier, and the
relation between the environment in which the program is compiled and that in which
it is executed. We believe that this characterization is a significant contribution of
this work, because it is fundamental to any architecture that uses a similar approach.

The rest of the paper is organized as follows. After closing this section with a brief
review of related work, in Section 2 we discuss some background material covering PCA,
and the assumptions we make about the interface it provides. Section 3 introduces PCAL
and its compiler through an example. Details of the language, its compilation, and correct-
ness theorems are covered in Section 4. Some important implementation-related issues are
discussed in Section 5.

Related Work

There are two prior lines of work on combining proofs of authorization with languages. The
first line of work includes the languages Aura [20, 24] and PCML5 [4], where PCA as well
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as a logic for expressing policies are embedded in the type system, and proofs are data
or type structures that programs can analyze. This contrasts with PCAL, where proofs
cannot be analyzed. PCAL’s approach is advantageous because it decouples the logic from
the language, thus making it easy to use the same compiler with different logics. It also
alleviates the programmer’s burden of understanding the logic. On the other hand, in Aura
and PCML5, parts of proofs can be re-used in different places, thus allowing potentially more
efficient proof construction than in PCAL. However, it is unclear whether this advantage
extends when automatic theorem provers are used in either Aura or PCML5.

The second line of work includes several languages that culminate in the most recent
F7 [8,14]. These languages use an external logic like PCAL, but the objective is to express
logical conditions. The programmer can introduce logical assumptions at different program
points, and check statically at other program points that those assumptions entail some
other formula(s). In PCAL it is not necessary that each programmer annotation about a
proof succeed statically; if it fails, code to construct the proof at run time is automatically
inserted. This approach is similar to hybrid typechecking [13], especially as applied to recent
security type systems [9, 11]. Indeed, PCAL departs from previous lines of work in that it
does not try to enforce security on its own; instead it is meant as a tool to help programs
comply with a PCA interface that enforces security.

PCA, the architecture that PCAL supports, was introduced by Appel and Felten [3].
It has been applied in different settings including authorization for web services [5], the
Grey system [6], and the file system PCFS [18]. The latter implementation is the basic test
bench for PCAL. The specific logic used for writing policies in this paper (and PCFS) is
BL [15,16]. It is related to, but more expressive than, many other logics and languages for
writing access policies (e.g., [1, 2, 7, 12,17,19,23]).

2 Background

In this section we provide a brief overview of PCA, and list particular assumptions that
PCAL makes about the underlying PCA-based system interface.

PCA [3, 5, 6, 18, 20, 22] is a general architecture for enforcing access control in settings
that require complex, rule-based policies. Policy rules are expressed as formulas in some
fixed logic, and enforced automatically using formal proofs. Let L denote a set of formulas
that represent the access policy (see Section 3 for an example). The system interface grants
user A permission η (e.g., read, write) on a resource t (e.g., a file) only if A produces
a formal proof γ which shows that L entails a formula auth(A, η, t) in the logic’s proof
system. The formula auth(A, η, t) means that A has permission η on resource t. Its exact
form depends on the logic in use and the resources being protected, but is irrelevant for the
purposes of this paper. (Here it suffices to assume that auth(A, η, t) is an atomic formula.)
The system interface checks the proof that A provides to make sure that it uses the logic’s
inference rules correctly, and that it proves the intended formula. The system interface
must provide a mechanism by which users can submit proofs either prior to or along with
an access request. Even though users are free to construct proofs by any means they like,
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it is convenient to have an automatic theorem prover to perform this task.

Assumptions

PCAL’s compiler supports rich logics for writing policies, in which proofs may depend not
only on the formulas constituting the policy, but also on system state (e.g., meta-data of
files and clock time). Let H denote the system state. We write γ :: H;L ` s to mean that
γ is a formal proof which shows that in the system state H, policies L entail formula s. (In
particular, s may be auth(A, η, t).)

PCAL assumes that an automatic theorem prover for the logic is available, both through
an API and as a command line tool. A call to the theorem prover (either through the API
or the command line) is formally summarized by the notation H;L ` s↘ γ, which means
that asking the theorem prover to construct a proof for s from policy L in state H results
in the proof γ. Dually, H;L ` s 6↘ means that the theorem prover fails to construct a
corresponding proof. The latter does not imply the absence of a proof in the logic, since the
theorem prover may implement an incomplete search procedure. The following command is
assumed to invoke the prover from the command line and store in the file pf a proof which
establishes auth(A, η, t) from the policies in /pl and the prevailing system state.

prove auth(A, η, t) /pl > pf

For passing proofs to the system interface, we assume a simple protocol: a command inject
is called from the command line to give a proof to the system interface, which puts it in a
store that is indexed by the triple (A, η, t) authorized by the proof. During the invocation
of a system API, relevant proofs are retrieved from this store and checked. For example,
the following command injects the proof in the file pf into the interface’s store.

inject pf

While proofs required to execute commands at run time must be ground, proofs produced
at compile time may contain free variables, which we assume are listed in order, and which
need to be instantiated at run time. For such proofs, the run-time substitutions of such
variables are also provided to the inject command (with option -subst), so that the
injected proofs are always ground. For example, the following command substitutes the
run-time values of some Bash variables (in order) for the free variables in the proof read
from file .pf and stores the resulting proof in the system interface.

inject pf -subst $_PRIN $z $x $y $bar $foo

3 Overview of PCAL

In this section, we work through a small example to demonstrate the steps of our com-
pilation. (PCAL is formalized in Section 4.) For this example, let there be a predicate
extension and functions path and base, such that (informally):
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• extension(f, e) holds if file f has extension e;

• path(d, x) = p if path p is the concatenation of directory d and name x;

• base(p) = x if path(d, x) = p for some directory d.

Consider the program P in Figure 1, written in PCAL. This program iterates through
the files in some directory foo (unspecified), copying them to a directory bar (set to "/tmp").
Furthermore, it touches those files in foo that have extension "log". The reader may ignore
the assert statements (in lines 2, 8, 12, and 13) in a first reading; we explain their meaning
below.

The system is configured to check, for any command, that certain permissions are held on
certain paths in order to execute that command. Let us assume the following configuration:

Configuration

• Iterating over directory d requires permission read on d.

• Executing the shell command touch(f) requires permission write on file f .

• Executing the shell command cp(f1, f2) requires permission read on file f1, and per-
mission write on file f2.

The assert statements in P serve to establish, at run time, that the principal running
the script has particular permissions on particular paths. The compiler tries to statically
identify assert statements that must succeed at run time, and eliminate them at compile
time.

Assume that member is a predicate such that member(f, d) holds if file f is in direc-
tory d. Consider the following policy, written in a first-order logic with the convention that
implication ⇒ is right associative.

Policy

auth("User", read, "/home").
∀A.∀x. auth(A, write, path("/tmp", x)).
∀A.∀x.∀y. member(x, y)⇒ auth(A, read, y)⇒

(auth(A, read, x) ∧
(extension(x, "log")⇒ auth(A, write, x))).

Informally, the policy asserts the following:

• the principal "User" has permission read on directory "/home"

• any principal A has permission write on any file in the directory "/tmp"
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Program P

1 bar = "/tmp";
2 assert (read, foo);
3 for x in foo {
4 y = x;
5 x = base(x);
6 z = path(foo, x);
7 test extension(z, "log") {
8 assert (write, z);
9 shell touch(z)

10 };
11 z = path(bar, x);
12 assert (write, z);
13 assert (read, y);
14 shell cp(y, z)
15 }

Program Q

1 bar = "/tmp";
2 assert (read, foo);
3 for x in foo {
4 y = x;
5 x = base(x);
6 z = path(foo, x);
7 test extension(z, "log") {
8 -- assert (write, z);
9 shell touch(z)

10 };
11 z = path(bar, x);
12 -- assert (write, z);
13 -- assert (read, y);
14 shell cp(y, z)
15 }

Script S

!/bin/bash
function base { _RET=${1##*/} }
function path { _RET=$1/$2 }
function extension { if [ ${1##*.} = $2 ]; then _RET="ok"; fi }
_PRIN="User"
foo="/home"

1 bar="/tmp"
2 prove auth ($_PRIN, read, $foo) /pl > pf
inject pf

3 for x in ‘ls $foo‘; do x=$foo/$x
4 y=$x
5 _RET="_"; base $x; x=$_RET
6 _RET="_"; path $foo $x; z=$_RET
7 _RET="_"; extension $z "log"; if [ $_RET = "ok" ]; then
8 inject /pf/1 -subst $_PRIN $z $x $y $bar $foo
9 touch $z

10 fi
11 _RET="_"; path $bar $x; z=$_RET
12 inject /pf/2 -subst $_PRIN $z $x $y $bar $foo
13 inject /pf/3 -subst $_PRIN $z $x $y $bar $foo
14 cp $y $z
15 done

Figure 1: Translation of an input program P , via an intermediate program Q, to an output
script S. (The configuration, policy, and rewrite theory provided to the compiler are shown
elsewhere.)
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• for any principal A, file x, and directory y, if x is in y and A has permission read on
y, then A has permission read on x, and furthermore, if x has extension "log" then
A has permission write on x.

Finally, consider the following theory on the function symbols path and base, that abstracts
the concrete semantics of these functions.

Theory

∀x.∀y. member(x, y)⇒ path(y, base(x)) = x

Given the configuration, policy, and theory above, our compiler automatically translates
P to the intermediate program Q in Figure 1. In Q, all assert statements except that
in line 2 are eliminated, since the compiler can infer that they must succeed at run time.
Such inference requires collection of path conditions, partial evaluation of terms modulo
the given equational theory, and calls to the theorem prover. We describe the compiler in
detail in Sections 4 and 5.

In particular, for the assert statement in line 8, the compiler reasons automatically
as follows. Let _PRIN be the principal running the script. Line 8 is reached only if the
following conditions hold for some z, x, x′, and foo:

(1) extension(z, "log").

(2) z = path(foo, x).

(3) x = base(x′).

(4) member(x′, foo).

(5) The statement assert (read, foo) in line 2 succeeds.

From condition (5), we can conclude that

(6) auth(_PRIN, read, foo).

Simplifying conditions (2), (3), and (4) using the given theory, we have

(7) z = x′.

Now from conditions (1), (4), (6), and (7) and the given policy, the theorem prover can
conclude that auth(_PRIN, write, z), which is sufficient to eliminate the assert statement
in line 8.

Next, we want to be able to run the intermediate program Q on a file system that
supports PCA. The compiler translates Q to the equivalent Bash script S in Figure 1.
The commands prove and inject perform functions described in Section 2. The header
(the part of S before the numbered lines) defines all free variables (_PRIN and foo) and
uninterpreted functions and predicates (path, base, extension) in P . The implementations
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of such functions and predicates are sound with respect to the equational theory used by
the compiler.

We close this section by discussing our trust assumptions. A policy is trusted, so any
interpreted predicates in a policy (such as member and extension) must have trusted imple-
mentations (provided by the system). In contrast, a program is not trusted. The compiler
may or may not be trusted. If the compiler is trusted, then the system can trust scripts
produced by the compiler, and run such scripts without checking the proofs that they inject.
This is significant in implementations where proofs may be large and proof verification may
be costly. However, such a compiler cannot assume semantic properties of the functions used
in a program (such as base and path) unless those functions have trusted implementations
that are provided by the system. On the other hand, if the compiler is not trusted then the
system must run all scripts with access checks. We implicitly assume the latter scenario
in the sequel, and provide additional guarantees for the scenario in which the compiler is
trusted (Theorem 4.2).

4 PCAL: Syntax, Semantics, and Compilation

We now describe the PCAL language and its compiler. We present the syntax of PCAL
programs, define their operational semantics, formalize our compilation procedure and show
that it preserves the behavior of programs.

For simplicity of presentation, we abstract various details of the implementation. (See
Section 5 for a more detailed discussion.) Instead of Bash, we consider an extension of
PCAL as the target language for compilation; programs in this target language can be
easily rewritten to Bash. We also treat all function symbols as uninterpreted, although in
principle, equations over terms may be freely added in the run time semantics (to model
concrete implementations) and in the compiler (to model abstract properties of such imple-
mentations).

We assume that η, x, and t range over permissions, variables, and terms whose grammars
are borrowed from the logic used to represent policies. ϕ denotes a logical predicate whose
truth depends only on the system state (i.e., a predicate that is not defined by logical
rules). PCAL programs are sequences of statements e described by the grammar below.
Directories, files, and paths are represented as terms, and χ is a special variable that is
bound to the principal running a program.

Syntax

e ::= statements
for x in t {P} for each file f in directory t, bind x to f and do P
test ϕ {P} if condition ϕ holds, do P
x = t assign t to x
shell n(t1, . . . , tk) call shell command n with parameters t1, . . . , tk
assert (η, t) assert that principal χ has permission η on path t

P,Q ::= programs
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e;Q run e, then do Q
end skip/halt

We also consider below an extension of PCAL which acts as the target language for the
compiler. α = prove (η, t) and inject (η, t) γ are formal representations of the commands
prove and inject from Section 2. γ ranges over proofs and α denotes a variable bound to
a proof (which, in the actual implementation, is a temporary file that stores the proof; see
Section 5).

Extended syntax

e ::= statements
. . .
α = prove (η, t) prove that principal χ has permission η on path t

and bind the proof to α
inject (η, t) γ inject proof γ that authorizes (χ, η, t)

Semantics

A PCAL program runs in an environment θ of the form (∆,L), where ∆ is a function
from shell command names to lists of permissions (configuration) and L is the set of logical
formulas used to determine access (policy). Informally, if ∆(n) = η1, . . . , ηk then executing
shell command n(t1, . . . , tk) requires permissions η1, . . . , ηk on paths t1, . . . , tk respectively.

A state ρ is a triple (H,S, ξ), where H is an abstract, logical representation of the part
of the system state on which proofs of access depend, S is a function from paths to terms
(data store), and ξ is a partial function from triples (A, η, t) to proofs (proof store). H must
contain, at the least, information about members of directories. We write members(H, t) to
denote the list of files in directory t in the system state H. Proofs injected using inject (η, t) γ
are added to ξ.

Reductions are of the form ρ, P
θ,χ−→ ρ′, P ′, meaning that program P at state ρ, run

by principal χ in environment θ, reduces to program P ′ at state ρ′. The reduction rules

are shown in Figure 2. H,S
n(t1,...,tk)
I H ′, S′ means that executing the shell command

n(t1, . . . , tk) updates the system state H and data store S to H ′ and S′ respectively. H |= ϕ
means that ϕ holds in H, and H 6|= ϕ means that ϕ does not hold in H. In practice, whether
ϕ holds in H or not is decided using a trusted decision procedure provided by the system.

• (Reduct for) unrolls a loop P for each file x in a directory t. (Reduct test)
simplifies test ϕ {P};Q to P ;Q if H |= ϕ, and to Q otherwise. (Reduct assign) is
straightforward.

• (Reduct shell) finds proofs γ1, . . . , γn needed to authorize the shell command
n(t1, . . . , tk) in the proof store ξ. It then checks these proofs (premise γi :: H;L `

auth(χ, ηi, ti)), and executes the shell command (premise H,S
n(t1,...,tk)
I H ′, S′).
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Reduction ρ, P
θ,χ−→ ρ′, P ′

(Reduct for)
ρ = (H, , ) members(H, t) = t1, . . . , tk

ρ, for x in t {P};Q θ,χ−→ ρ, P{t1/x}; . . . ;P{tk/x};Q

(Reduct test)
ρ = (H, , ) H � ϕ

ρ, test ϕ {P};Q θ,χ−→ ρ, P ;Q

ρ = (H, , ) H 6� ϕ

ρ, test ϕ {P};Q θ,χ−→ ρ,Q

(Reduct assign) ρ, x = t;Q
θ,χ−→ ρ,Q{t/x}

(Reduct shell)

θ = (∆,L) ∆(n) = η1, . . . , ηk ρ = (H,S, ξ)
ξ(χ, ηi, ti) = γi γi :: H;L ` auth(χ, ηi, ti)

H,S
n(t1,...,tk)
I H ′, S′ ρ′ = (H ′, S′, ξ)

ρ, shell n(t1, . . . , tk);P
θ,χ−→ ρ′, P

(Reduct assert)

θ = ( ,L) ρ = (H,S, ξ)
H;L ` auth(χ, η, t)↘ γ ρ′ = (H,S, ξ[(χ, η, t) 7→ γ])

ρ, assert (η, t);P
θ,χ−→ ρ′, P

(Reduct prove)
θ = ( ,L) ρ = (H, , ) H;L ` auth(χ, η, t)↘ γ

ρ, α = prove (η, t);P
θ,χ−→ ρ, P{γ/α}

(Reduct inject)
ρ = (H,S, ξ) ρ′ = (H,S, ξ[(χ, η, t) 7→ γ])

ρ, inject (η, t) γ;P
θ,χ−→ ρ′, P

Figure 2: Reduction rules

• (Reduct assert) calls the theorem prover to construct a proof γ which shows that
χ has permission η on path t (premise H;L ` auth(χ, η, t)↘ γ), and passes it to the
system interface by placing it in the store ξ.

• (Reduct prove) constructs a proof γ and binds α to it. (Reduct inject) places a
proof γ in the proof store ξ. By these rules, the effect of the command sequence α =
prove (η, t); inject (η, t) α is exactly the same as the command assert (η, t). However,
assert (η, t) occurs only in source programs whereas prove (η, t) and inject (η, t) γ occur
only in compiled programs.

Compilation

Next, we formalize compilation of PCAL programs. As the compiler traverses a program,
it maintains a database of facts that must be true at the program point that the compiler
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is looking at. These facts are formally represented by Γ = (σ,Φ,Ξ).

• σ is a list of substitutions of the form {t/x}. The latter means that program variable
x is bound to term t.

• Φ is a list of interpreted predicates ϕ that can be assumed to hold at a program point.
These are gathered from commands test ϕ {. . .} and for x in t {. . .}. In particular,
ϕ may be of the form member(t′, t), meaning that path t′ is in directory t; and we
assume that members(H, t) = t1, . . . , tk implies H � member(t1, t)∧ · · · ∧ member(tk, t).

• Ξ is a partial function from triples (A, η, t) to authorization proofs that the compiler
has already constructed.

Figure 3 shows the rules to derive judgments of the form Γ ` P H,θ,χ
 P ′, meaning that under

assumptions Γ, program P compiles to program P ′ in environment θ and system state H.
χ is given to the compiler at the time of invocation; it represents the user who is expected
to run the compiled program. H is the state of the system in which the compiled program
is expected to run. It may either be the system state at the time of compilation (if it is
expected that the compiled program will run in the same state), or it may be a state that
the user provides. Both χ and H are needed to call the theorem prover during compilation.

For any syntactic entity E, we write Eσ to denote the result of applying the substitution
σ to E. W(P ) denotes the variables that are assigned in the program P , and σ\x̃ denotes
the restriction of σ that removes the mappings for all variables in x̃. Finally, |Ξ| and 〈Ξ〉
extract the formulas and proofs in Ξ (

∏
denotes tupling of proofs):

|Ξ| =
∧

(A,η,t)∈dom(Ξ)

auth(A, η, t) 〈Ξ〉 =
∏

γ∈rng(Ξ)

γ

• (Comp end) terminates compilation when end is seen.

• (Comp for) compiles for x in t {P};Q by compiling P to P ′ under the added assump-
tion member(x, tσ) (which must hold inside the body of the loop), and compiling Q
to Q′. In each case, any prior substitutions for variables x̃ assigned in P are removed
from σ, because they may be invalidated during the execution of the loop (premises
x̃ =W(P ) and σ′ = σ\x̃).

• (Comp test) is similar to (Comp for); in this case the assumption ϕσ is added
when compiling the body P of the test branch.

• (Comp assign) records the effect of assignment x = t by augmenting substitution σ
with {tσ/x}. This augmented substitution is used to compile the remaining program.

• (Comp shell) checks that there is a proof in the set of previously constructed proofs Ξ
to authorize each permission needed to execute a shell command n(t1, . . . , tk). (Proofs
are added to this set in the next two rules).
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Compilation Γ ` P H,θ,χ
 P ′

(Comp end) Γ ` end
H,θ,χ
 end

(Comp for)

Γ = (σ,Φ,Ξ) x̃ =W(P ) σ′ = σ\x̃
x fresh in Γ Φ′ = Φ, member(x, tσ)

(σ′,Φ′,Ξ) ` P H,θ,χ
 P ′ (σ′,Φ,Ξ) ` Q H,θ,χ

 Q′

Γ ` for x in t {P};Q H,θ,χ
 for x in t {P ′};Q′

(Comp test)

Γ = (σ,Φ,Ξ) x̃ =W(P ) σ′ = σ\x̃ Φ′ = Φ, ϕσ

(σ,Φ′,Ξ) ` P H,θ,χ
 P ′ (σ′,Φ,Ξ) ` Q H,θ,χ

 Q′

Γ ` test ϕ {P};Q H,θ,χ
 test ϕ {P ′};Q′

(Comp assign)
Γ = (σ,Φ,Ξ) σ′ = σ[x 7→ tσ] (σ′,Φ,Ξ) ` P H,θ,χ

 P ′

Γ ` x = t;P
H,θ,χ
 x = t;P ′

(Comp shell)

θ = (∆, ) ∆(n) = η1, . . . , ηk Γ = (σ, ,Ξ)

(χ, ηi, tiσ) ∈ dom(Ξ) for each i Γ ` P H,θ,χ
 P ′

Γ ` shell n(t1, . . . , tk);P
H,θ,χ
 shell n(t1, . . . , tk);P ′

(Comp static)

Γ = (σ,Φ,Ξ) θ = ( ,L)
H,Φ;L ` |Ξ| ⇒ auth(χ, η, tσ)↘ γ′ γ = γ′ 〈Ξ〉

Ξ′ = Ξ[(χ, η, tσ) 7→ γ] Γ′ = (σ,Φ,Ξ′) Γ′ ` P H,θ,χ
 P ′

Γ ` assert (η, t);P
H,θ,χ
 inject (η, t) γ;P ′

(Comp dynamic)

Γ = (σ,Φ,Ξ) θ = ( ,L)
H,Φ;L ` |Ξ| ⇒ auth(χ, η, tσ) 6↘ α fresh in Γ, P

Ξ′ = Ξ[(χ, η, tσ) 7→ α] Γ′ = (σ,Φ,Ξ′) Γ′ ` P H,θ,χ
 P ′

Γ ` assert (η, t);P
H,θ,χ
 α = prove (η, t); inject (η, t) α;P ′

Figure 3: Compilation rules

• (Comp static) and (Comp dynamic) are used to compile the command assert (η, t)
in different cases. To decide which rule to use, the compiler tries to statically prove
|Ξ| ⇒ auth(χ, η, tσ) by calling the theorem prover. The context in which the proof
is constructed not only contains H and the policy L, but also information about
directory memberships and predicates tested in outer scopes (Φσ). If a proof γ′ can
be constructed, rule (Comp static) is used: assert (η, t) is replaced by inject (η, t) γ,
which passes the statically generated proof γ = γ′ 〈Ξ〉 to the system interface at run
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time. (γ′ 〈Ξ〉 is the proof of auth(χ, η, tσ) obtained by eliminating the connective ⇒
from |Ξ| ⇒ auth(χ, η, tσ)). Also, the fact that the new proof exists is recorded by
updating Ξ to Ξ′ = Ξ[(χ, η, tσ) 7→ γ], and using Ξ′ to compile the remaining program
P . If the proof construction fails, rule (Comp dynamic) is used: the compiler
generates code both to construct the proof at run time and to inject it into the system
interface. Accordingly, assert (η, t) is compiled to α = prove (η, t); inject (η, t) α. Even
in this case, it is safe to assume that a proof of auth(χ, η, tσ) will exist when P executes
(else α = prove (η, t) will block at run time), so Ξ is updated to Ξ′ = Ξ[(χ, η, tσ) 7→ α].

Formal Guarantees

We close this section by stating two theorems that guarantee correctness of compilation.
Proofs of these theorems can be found in the related technical report [10]. We begin by
defining a preorder ≤ on system states. Roughly, H ≤ H ′ if any formula that holds under
H also holds under H ′.

Definition 4.1 (≤). For any H and H ′, let H ≤ H ′ if for all ϕ, γ, L, and s, (1) H � ϕ
implies H ′ � ϕ, and (2) γ :: H;L ` s implies γ :: H ′;L ` s.

Next, we assume the following axioms for the various external judgments. Roughly, Ax-
iom (1) states that system states are updated monotonically by shell command executions.
Axioms (2), (3), and (4) state that verification of proofs must be closed under substitution,
modus ponens, and product. Axiom (5) states that the theorem prover produces only veri-
fiable proofs (i.e., the theorem prover is sound). Axiom (6) states that the theorem prover
always produces a proof if some proof exists (i.e., the theorem prover is complete).

Axioms

(1) if H,S
n(t1σ,...,tkσ)
I H ′, S′ then H ≤ H ′

(2) if γ :: H;L ` s then γσ :: Hσ;L ` sσ

(3) if γ :: H;L ` s and γ′ :: H;L ` s⇒ s′ then (γ′ γ) :: H;L ` s′

(4) if γi :: H;L ` si for each i ∈ 1..n, then (
∏
i∈1..n

γi) :: H;L `
∧

i∈1...n

si

(5) if H;L ` s↘ γ then γ :: H;L ` s

(6) if γ :: H;L ` s then H;L ` s↘ γ′ for some γ′.

We can now show that compilation preserves the behavior of programs. More precisely,
if a program P compiles to a program P ′ under a system state H, and the programs are
run from a system state H ′ such that H ≤ H ′, then P and P ′ evaluate to the same state.
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Theorem 4.1 (Compilation correctness). Suppose that Axioms (1–6) hold, and (∅,∅,∅) `

P
H,θ,χ
 P ′. Then for all A and ρ = (H ′, , ) such that H ≤ H ′, we have ρ, P

θ,A

−→? ρ′, Q for

some Q if and only if ρ, P ′
θ,A

−→? ρ′, Q′ for some Q′. (
θ,A

−→? denotes the reflexive-transitive

closure of
θ,A−→)

Finally, we show that a compiled program can never fail due to an access check, if the
policy does not change between compile time and run time. Formally, compilation preserves
the behavior of programs even if the compiled programs are run without access checks.

Definition 4.2 (=⇒). Let =⇒ be the same reduction relation as −→ except that the rule
(Reduct shell) is replaced by the following rule, which differs from the earlier version in
that its premises do not mention any proofs.

θ = (∆,L)

∆(n) = η1, . . . , ηk ρ = (H,S, ξ) H,S
n(t1,...,tk)
I H ′, S′ ρ′ = (H ′, S′, ξ)

ρ, shell n(t1, . . . , tk);P
θ,χ−→ ρ′, P

Theorem 4.2 (Access control redundancy). Suppose that Axioms (1–6) hold, and (∅,∅,∅) `

P
H,θ,χ
 P ′. Then for all A and ρ = (H ′, , ) such that H ≤ H ′, we have ρ, P ′

θ,A

−→? ρ′, Q for

some Q if and only if ρ, P ′
θ,A

=⇒? ρ′, Q′ for some Q′.

Before we close this section, let us point out some consequences of our axioms. Axioms
(2), (3), (4), (5) represent standard expectations from the proof system and the theorem
prover. Axiom (6) is required to prove soundness of the compiler (“if” direction of Theo-
rem 4.1) since, in its absence, there is no guarantee that a statically provable authorization
will be successfully proved in the rule (Reduct assert) when executing the source program
directly. Axiom (1) is needed for a similar purpose; without this axiom, the compiler must
throw away assumptions on the system state in the continuation of any shell command.
However, the axiom may seem too strong and invalid in practice. Fortunately, weaker ver-
sions of this axiom suffice to prove our theorems for specific programs. In particular, the
definition of H ≤ H ′ may be qualified to require that H � ϕ imply H ′ � ϕ for only those ϕ
that appear in a program of interest (and their substitution instances).

5 Implementation

We have implemented a prototype PCAL compiler and tested it on the proof-carrying file
system PCFS [18]. The specific logic currently used in our implementation is BL [16,
18]. The interested reader can find a complete example (involving homework management
between instructors and students of various courses) in the appendix. We now discuss some
implementation details that are left abstract in Section 4.
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Rewrite rules

A set of rewrite rules over terms, modeling abstract properties of the concrete implemen-
tations of function symbols, can be provided to the compiler to improve its precision. The
compiler constructs a normalization function based on these rules, and applies this function
eagerly to substitutions. This works well even in cases where it is not possible to interpret
function symbols with directed clauses in the policy. (Modeling equations as clauses usually
causes proof searches to loop.)

Quantified proofs

Statically generated proofs may contain free variables, and as such they are parametric over
those variables. In the formal semantics, such proofs are bound and carried as values in
the language (in inject statements), so they get implicitly instantiated before injection at
run time. However in our actual implementation, such proofs are output to temporary files
with distinct names (under /.pf), and the names are carried in the language; so the free
variables in such proofs must be explicitly substituted at run time. This explains why we
considered an explicit -subst option to the inject command in Section 2.

6 Conclusion

PCAL combines static checks and dynamic theorem proving to automate correct and effi-
cient use of a PCA-based interface. PCAL’s compiler is modular: it is parametric over both
the shell commands (system interface) and the logic it supports. Although this makes the
compiler flexible, the interaction between the core language, shell commands, and the logic
is subtle and requires careful design. The compiler is made practical through a combination
of simple user annotations, static constraint tracking, dynamically checked assertions, and
run time support from a command line theorem prover. We prove formally that these ideas
work well together. It is our belief that PCAL’s design is novel, and that it will be a useful
stepping stone for languages that support rule-based access control interfaces in future.

There are several interesting avenues for future work. An obvious one is to run realistic
examples on PCAL, to determine what other features are needed in practice. Another
possible direction is a code execution architecture where a trusted PCAL compiler is used
to generate certified scripts that are run with minimal access control checks. Finally, it
will be interesting to apply ideas from PCAL, particularly the use of an automatic theorem
prover, in the context of language-based security for access control interfaces (e.g., [4, 20]).
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A Proofs

A.1 Proof of Theorem 4.1

In the following proof, we use a non-deterministic version of our compilation relation, with
the following changes.

1. (Comp static) can guess any proof that works, not necessarily a proof returned by
the theorem prover.
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Γ = (σ,Φ,Ξ) θ = ( ,L)
γ′ :: H,Φ;L ` |Ξ| ⇒ auth(χ, η, tσ) γ = γ′ 〈Ξ〉 = γσ

Ξ′ = Ξ[(χ, η, tσ) 7→ γ] Γ′ = (σ,Φ,Ξ′) Γ′ ` P H,θ,χ
 P ′

Γ ` assert (η, t);P
H,θ,χ
 inject (η, t) γ;P ′

2. (Comp dynamic) can be applied whenever (Comp static) can be applied.

Γ = (σ,Φ,Ξ) θ = ( ,L) α fresh in Γ, P

Ξ′ = Ξ[(χ, η, tσ) 7→ α] Γ′ = (σ,Φ,Ξ′) Γ′ ` P H,θ,χ
 P ′

Γ ` assert (η, t);P
H,θ,χ
 α = prove (η, t); inject (η, t) α;P ′

Note that these changes allow some more programs to be compiled, but no less; thus,
they do not affect the soundness of our results.

We begin with a few basic lemmas. We assume that if (σ,Φ,Ξ) ` P
H,θ,χ
 P ′ then

(fv(Φ) ∪ fv(Ξ)) ∩ dom(σ) = ∅; note that this invariant is preserved by our typing rules.

Lemma A.1. Suppose that (σ,Φ,Ξ) ` P H,θ,χ
 P ′ and x /∈ dom(σ).

Then (σ[x 7→ tσ],Φ{tσ/x},Ξ{tσ/x}) ` P H,θ,χ
 P ′.

Proof. By induction on the derivation of the compilation judgment for P . The only inter-
esting case is (Comp static), where we use Axiom (2).

Case P = assert (η, t); Q̂ and P ′ = inject (η, t) γ; Q̂′

such that θ = ( ,L),
γ′ :: H,Φ;L ` |Ξ| ⇒ auth(χ, η, tσ),
γ = γ′ 〈Ξ〉,
Ξ̂ = Ξ[(χ, η, tσ) 7→ γ],

and (σ,Φ, Ξ̂) ` Q̂ H,θ,χ
 Q̂′.

Let σ′ = {t′σ/x}.
We require (σ[x 7→ t′σ],Φσ′,Ξσ′) ` P H,θ,χ

 P ′.
By Axiom (2), γ′σ′ :: H,Φσ′;L ` |Ξσ′| ⇒ auth(χ, η, tσσ′).

Also, by assumption, (σ[x 7→ t′σ],Φσ′, Ξ̂σ′) ` Q̂ H,θ,χ
 Q̂′.

The result follows.

Lemma A.2. Suppose that (σ[x 7→ tσ],Φ,Ξ) ` P H,θ,χ
 P ′.

Then (σ,Φ,Ξ) ` P{t/x} H,θ,χ P ′{t/x}.

Proof. By induction on the derivation of the compilation judgment for P .
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Lemma A.3. Suppose that (σ,Φ,Ξ) ` P H,θ,χ
 P ′, x̃ =W(P ), and (σ\x̃,Φ,Ξ) ` Q H,θ,χ

 Q′.

Then (σ,Φ,Ξ) ` P ;Q
H,θ,χ
 P ′;Q′.

Proof. By induction on the derivation of the compilation judgment for P . The only inter-
esting cases are (Comp assign), where we use Lemma A.1, and (Comp for) and (Comp
test), which are similar but do not require any additional lemma. Let Γ = (σ,Φ,Ξ).

Case P = for x in t {P̂}; Q̂
Then P ′ = for x in t {P̂ ′}; Q̂′ such that
x is fresh in Γ,
Φ̂ = Φ, member(x, tσ),
z̃ =W(P̂ ),

(σ\z̃, Φ̂,Ξ) ` P̂ H,θ,χ
 P̂ ′,

and (σ\z̃,Φ,Ξ) ` Q̂ H,θ,χ
 Q̂′.

By assumption, x̃ = z̃ ∪W(Q̂)

and (σ\x̃,Φ,Ξ) ` Q H,θ,χ
 Q′.

We need (σ\z̃,Φ,Ξ) ` Q̂;Q
H,θ,χ
 Q̂′;Q′.

The result follows by the inductive hypothesis.

Case P = test ϕ {P̂}; Q̂
Then P ′ = test ϕ {P̂ ′}; Q̂′ such that
z̃ =W(P̂ ),
Φ̂ = Φ, ϕσ,

(σ, Φ̂,Ξ) ` P̂ H,θ,χ
 P̂ ′,

and (σ\z̃,Φ,Ξ) ` Q̂ H,θ,χ
 Q̂′.

By assumption, z̃ = x̃ ∪W(Q̂)

and (σ\x̃,Φ,Ξ) ` Q H,θ,χ
 Q′.

We need (σ\z̃,Φ,Ξ) ` Q̂;Q
H,θ,χ
 Q̂′;Q′.

The result follows by the inductive hypothesis.

Case P = (x = t; Q̂)
Then P ′ = (x = t; Q̂′) such that

(σ[x 7→ tσ],Φ,Ξ) ` Q̂ H,θ,χ
 Q̂′.

By assumption, x̃ = {x} ∪W(Q̂)

and (σ\x̃,Φ,Ξ) ` Q H,θ,χ
 Q′.

We need (σ[x 7→ tσ],Φ,Ξ) ` Q̂;Q
H,θ,χ
 Q̂′;Q′.

Let

• x ∈ W(Q̂).
The result follows by the inductive hypothesis.
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• x /∈ W(Q̂).
Then σ\W (Q̂) = (σ\x̃)[x 7→ tσ].
The result follows by Lemma A.1 and the inductive hypothesis.

Building on these basic lemmas, the proof of Theorem 4.1 relies on the following main
lemma. Here, we write σ <µ σ when σµ = σ and µ only substitutes proofs. Note that
since terms t and propositions ϕ cannot contain proof variables, we always have tµ = t and
ϕµ = ϕ.

Lemma A.4. Suppose that Axioms (1–6) hold. Let σ be any ground substitution, and σ,
µ be such that σ <µ σ. Let θ = ,L. Let H, Φ, Ξ, H, and ξ be such that H � H,Φ
and ∀(χ, η, t) ∈ dom(Ξ), we have H;L ` auth(χ, η, t) ↘ ξ(χ, η, t) and Ξ(χ, η, t)µ :: H;L `
auth(χ, η, t).

Suppose that (σ,Φ,Ξ) ` P H,θ,χ
 P ′.

• If H,S, ξ, Pσ
θ,χ−→ H ′, S′, ξ′, Qσ′ for some Q and σ′ then

H,S,Ξµ, P ′σ
θ,χ−→ H ′, S′,Ξ′µ′, Q′σ′ for some Q′, µ′, Φ′, and Ξ′ such that

σ <µ′ σ
′, (σ,Φ′,Ξ′) ` Q

H,θ,χ
 Q′, H ′ � H,Φ′, and ∀(χ, η, t) ∈ dom(Ξ′): H ′;L `

auth(χ, η, t)↘ ξ′(χ, η, t) and Ξ′(χ, η, t)µ′ :: H ′;L ` auth(χ, η, t).

• If H,S,Ξµ, P ′σ
θ,χ−→ H ′, S′, ξ′′, Q′σ′ for some ξ′′, Q′, and σ′ then ξ′′ = Ξ′µ′

and H,S, ξ, Pσ
θ,χ−→

?

H ′, S′, ξ′, Qσ′ for some Q, µ′, Φ′, and Ξ′ such that

σ <µ′ σ
′, (σ,Φ′,Ξ′) ` Q

H,θ,χ
 Q′, H ′ � H,Φ′, and ∀(χ, η, t) ∈ dom(Ξ′): H ′;L `

auth(χ, η, t)↘ ξ′(χ, η, t) and Ξ′(χ, η, t)µ′ :: H ′;L ` auth(χ, η, t).

(Note:
θ,χ−→

?

denotes zero or one steps of
θ,χ−→)

Proof. By induction on the derivation of the compilation judgment for P . Let Γ = (σ,Φ,Ξ).

Case P = for x in t {P̂}; Q̂
Then P ′ = for x in t {P̂ ′}; Q̂′ such that
x is fresh in Γ,
Φ̂ = Φ, member(x, tσ),
x̃ =W(P̂ ),

(σ\x̃, Φ̂,Ξ) ` P̂ H,θ,χ
 P̂ ′,

and (σ\x̃,Φ,Ξ) ` Q̂ H,θ,χ
 Q̂′.

Furthermore, let

• H ′ = H,
S′ = S,
ξ′ = ξ,
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σ′ = σ,
and Q = P̂ σ1; . . . ; P̂ σk; Q̂ such that
members(H, tσ) = t1, . . . , tk
and σ1 = {t1/x}, . . . , σk = {tk/x}.
Then Q′ = P̂ ′σ1; . . . ; P̂ ′σk; Q̂′.

We require (σ,Φ′,Ξ′) ` Q H,θ,χ
 Q′ for some Φ′,Ξ′.

Let Φ′ = Φ, member(t1, tσ), . . . , member(tk, tσ)
and Ξ′ = Ξ.
Using the freshness assumption on x:

By Lemmas A.1 and A.2 and weakening, (σ\x̃,Φ′,Ξ′) ` P̂ σi
H,θ,χ
 P̂ ′σi.

Furthermore, by weakening, (σ\x̃,Φ′,Ξ′) ` Q̂ H,θ,χ
 Q̂′.

By Lemma A.3, (σ\x̃,Φ′,Ξ′) ` P̂ σ1; . . . ; P̂ σk; Q̂
H,θ,χ
 P̂ ′σ1; . . . ; P̂ ′σk; Q̂′.

By construction, dom(σ′) ∩ (fv(Φ′) ∪ fv(Ξ′)) = ∅.
The required result follows by Lemma A.1.
Finally, we have
σ <µ′ σ

′ where µ′ = µ,
H ′ � H,Φ′ (by assumption on members and member, since σµ′ = σ),
and ∀(χ, η, t) ∈ Ξ′ :
Ξ′(χ, η, t)µ′ :: H ′;L ` auth(χ, η, t) and H ′;L ` auth(χ, η, t)↘ ξ′(χ, η, t).

• The converse case is similar.

Case P = test ϕ {P̂}; Q̂
Then P ′ = test ϕ {P̂ ′}; Q̂′ such that
x̃ =W(P̂ ),
Φ̂ = Φ, ϕσ,

(σ, Φ̂,Ξ) ` P̂ H,θ,χ
 P̂ ′,

and (σ\x̃,Φ,Ξ) ` Q̂ H,θ,χ
 Q̂′.

Furthermore, let

• H ′ = H,
S′ = S,
ξ′ = ξ,
σ′ = σ,
and Q = P̂ ; Q̂ such that
H � ϕσ.
Then Q′ = P̂ ′; Q̂′.

We require (σ,Φ′,Ξ′) ` Q H,θ,χ
 Q′ for some Φ′,Ξ′.

Let Φ′ = Φ̂
and Ξ′ = Ξ.
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By Lemma A.3 and weakening, we have the required result.
Finally, we have
σ <µ′ σ

′ where µ′ = µ,
H ′ � H,Φ′ (by assumption above),
and ∀(χ, η, t) ∈ Ξ′ :
Ξ′(χ, η, t)µ′ :: H ′;L ` auth(χ, η, t) and H ′;L ` auth(χ, η, t)↘ ξ′(χ, η, t).

• H ′ = H,
S′ = S,
ξ′ = ξ,
σ′ = σ,
and Q = Q̂ such that
H 6� ϕσ.
Then Q′ = Q̂′.

We require (σ,Φ′,Ξ′) ` Q H,θ,χ
 Q′ for some Φ′,Ξ′.

Let Φ′ = Φ,
and Ξ′ = Ξ.
By construction, dom(σ′) ∩ (fv(Φ′) ∪ fv(Ξ′)) = ∅.
So the required result follows by Lemma A.1.
Finally, we have
σ <µ′ σ

′ where µ′ = µ,
H ′ � H,Φ′,
and ∀(χ, η, t) ∈ Ξ′ :
Ξ′(χ, η, t)µ′ :: H ′;L ` auth(χ, η, t) and H ′;L ` auth(χ, η, t)↘ ξ′(χ, η, t).

• The converse case is similar.

Case P = (x = t; Q̂)
Then P ′ = (x = t; Q̂′) such that

(σ[x 7→ tσ],Φ,Ξ) ` Q̂ H,θ,χ
 Q̂′.

Furthermore, let

• H ′ = H,
S′ = S,
ξ′ = ξ,
σ′ = σ,
and Q = Q̂{tσ/x}.
Then Q′ = Q̂′{tσ/x}.

We require (σ,Φ′,Ξ′) ` Q H,θ,χ
 Q′ for some Φ′,Ξ′.

Let Φ′ = Φ,
and Ξ′ = Ξ.
By Lemma A.2 we have the required result.
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Finally, we have
σ <µ′ σ

′ where µ′ = µ,
H ′ � H,Φ′,
and ∀(χ, η, t) ∈ Ξ′ :
Ξ′(χ, η, t)µ′ :: H ′;L ` auth(χ, η, t) and H ′;L ` auth(χ, η, t)↘ ξ′(χ, η, t).

• The converse case is similar.

Case P = shell n(t1, . . . , tk); Q̂
Then P ′ = shell n(t1, . . . , tk); Q̂′ such that
θ = (∆,L),
∆(n) = η1, . . . , ηk,
(χ, ηi, tiσ) ∈ dom(Ξ) for each i,

and (σ,Φ,Ξ) ` Q̂ H,θ,χ
 Q̂′.

Furthermore, let

• ξ′ = ξ,
σ′ = σ,
and Q = Q̂ such that

H,S
n(t1σ,...,tkσ)
I H ′, S′,

ξ(χ, ηi, tiσ) = γi for each i,
and γi :: H;L ` auth(χ, ηi, tiσ) for each i.
(Note that we have H;L ` auth(χ, ηi, tiσ)↘ ξ(χ, ηi, tiσ) for each i.
So by Axiom (5) we do not need the proof-checking above.)
Let Ξ(χ, ηi, tiσ)µ = γi for each i.
By assumption, γi :: H;L ` auth(χ, ηi, tiσ) for each i.
Then Q′ = Q̂′.

We require (σ,Φ′,Ξ′) ` Q H,θ,χ
 Q′ for some Φ′,Ξ′.

Let Φ′ = Φ,
and Ξ′ = Ξ.
Then we have the required result.
Finally, we have
σ <µ′ σ

′ where µ′ = µ,
H ′ � H,Φ′ (by Axiom (1) and assumption on ≤ and �),
and ∀(χ, η, t) ∈ Ξ′ :
Ξ′(χ, η, t)µ′ :: H ′;L ` auth(χ, η, t) and H ′;L ` auth(χ, η, t)↘ ξ′(χ, η, t).

• The converse case is similar.

Case P = assert (η, t); Q̂ and P ′ = (α = prove (η, t); inject (η, t) α; Q̂′)
such that θ = ( ,L),
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α is fresh,
Ξ̂ = Ξ[(χ, η, tσ) 7→ α],

(σ,Φ, Ξ̂) ` Q̂ H,θ,χ
 Q̂′.

Furthermore, let

• H ′ = H,
S′ = S,
ξ′ = ξ[(χ, η, tσ) 7→ γ],
σ′ = σ[α 7→ γ],
and Q = Q̂ such that
H;L ` auth(χ, η, tσ)↘ γ.
Then Q′ = Q̂′.

We require (σ,Φ′,Ξ′) ` Q H,θ,χ
 Q′ for some Φ′,Ξ′.

Let Φ′ = Φ,
and Ξ′ = Ξ̂.
Then we have the required result.
Finally, we have
σ <µ′ σ

′ where µ′ = µ[α 7→ γ],
H ′ � H,Φ′,
and ∀(χ, η, t) ∈ Ξ′ :
Ξ′(χ, η, t)µ′ :: H ′;L ` auth(χ, η, t) and H ′;L ` auth(χ, η, t)↘ ξ′(χ, η, t)
(since in particular, H ′;L ` auth(χ, η, tσ)↘ ξ′(χ, η, tσ)
and since Ξ′(χ, η, tσ)µ′ = αµ′ = γ = ξ′(χ, η, tσ),
so, by Axiom (5), Ξ′(χ, η, tσ)µ′ :: H ′;L ` auth(χ, η, t)).

• H ′ = H,
S′ = S,
ξ′′ = ξ,
σ′ = σ,
and Q′ = inject (η, t) γ; Q̂ such that
H;L ` auth(χ, η, tσ)↘ γ.
Then Q = P .

We require (σ,Φ′,Ξ′) ` Q H,θ,χ
 Q′ for some Φ′,Ξ′.

Let Φ′ = Φ,
and Ξ′ = Ξ.
By assumption, we already have H;L ` auth(χ, η, tσ)↘ γ.

Now we require (σ,Φ,Ξ[(χ, η, tσ) 7→ γ]) ` Q̂ H,θ,χ
 Q̂′.

Since α /∈ dom(σ), the result follows by Lemma A.1.
Finally, we have
σ <µ′ σ

′ where µ′ = µ,
H ′ � H,Φ′,
and ∀(χ, η, t) ∈ Ξ′ :
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Ξ′(χ, η, t)µ′ :: H ′;L ` auth(χ, η, t) and H ′;L ` auth(χ, η, t)↘ ξ′(χ, η, t).

Case P = assert (η, t); Q̂ and P ′ = inject (η, t) γ; Q̂′

such that θ = ( ,L),
H,Φ;L ` |Ξ| ⇒ auth(χ, η, tσ)↘ γ′,
γ = γ′ 〈Ξ〉,
Ξ̂ = Ξ[(χ, η, tσ) 7→ γ],

and (σ,Φ, Ξ̂) ` Q̂ H,θ,χ
 Q̂′.

Furthermore, let

• H ′ = H,
S′ = S,
ξ′ = ξ[(χ, η, tσ) 7→ γ],
σ′ = σ,
and Q = Q̂ such that
H;L ` auth(χ, η, tσ)↘ γ.
Then Q′ = Q̂′

and Ξ′ = Ξ̂.
We require (σ,Φ′,Ξ′) ` Q H,θ,χ

 Q′ for some Φ′,Ξ′.
Let Φ′ = Φ.
Then we have the required result.
Finally, we have
σ <µ′ σ

′ where µ′ = µ,
H ′ � H,Φ′,
and ∀(χ, η, t) ∈ Ξ′ :
Ξ′(χ, η, t)µ′ :: H ′;L ` auth(χ, η, t) and H ′;L ` auth(χ, η, t)↘ ξ′(χ, η, t)
(since in particular, H ′;L ` auth(χ, η, tσ)↘ ξ′(χ, η, tσ), and
since by Axiom (5), γ′ :: H;L ` |Ξ| ⇒ auth(χ, η, tσ),
and by Axiom (4), 〈Ξ〉µ :: H;L ` |Ξ|,
so by Axiom (3), γµ′ :: H;L ` auth(χ, η, tσ)).

• H ′ = H,
S′ = S,
ξ′′ = Ξµ[(χ, η, tσ) 7→ γµ],
σ′ = σ,
and Q′ = Q̂′.
Let Ξ′ = Ξ̂.
Now, by assumption, we have H;L ` |Ξ| ⇒ auth(χ, η, tσ)↘ γ′.
Also, by Axiom (4), we have 〈Ξ〉µ :: H;L ` |Ξ|.
So, by Axiom (5), γ′ :: H;L ` |Ξ| ⇒ auth(χ, η, tσ).
So, by Axiom (3), γµ′ :: H;L ` auth(χ, η, tσ).
So, by Axiom (6), H;L ` auth(χ, η, tσ)↘ γ for some γ.
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Then Q = Q̂
and ξ′ = ξ[(χ, η, tσ) 7→ γ].

We require (σ,Φ′,Ξ′) ` Q H,θ,χ
 Q′ for some Φ′,Ξ′.

Let Φ′ = Φ.
Then we have the required result.
Finally, we have
σ <µ′ σ

′ where µ′ = µ,
H ′ � H,Φ′,
and ∀(χ, η, t) ∈ Ξ′ :
Ξ′(χ, η, t)µ′ :: H ′;L ` auth(χ, η, t) and H ′;L ` auth(χ, η, t)↘ ξ′(χ, η, t)
(since in particular, H ′;L ` auth(χ, η, tσ)↘ ξ′(χ, η, tσ), and
γµ′ :: H;L ` auth(χ, η, tσ) as shown above).

Lemma A.5. Lemma A.4 implies Theorem 4.1.

Proof. By induction on the length of
θ,A−→

?

.

A.2 Proof of Theorem 4.2

The proof follows by observation of the proof of Lemma A.4. In particular, for the case
where P is a shell command, using the relaxed (Reduct shell) rule suffices to establish
the required invariants.

B Example: Homework for Courses

Consider the following idealized scenario for homework management of various courses at
an university. There is a directory, "/courses", containing the directories of all courses.
In each course directory, there is a directory named "instructor" and a directory named
"students", both containing directories named after all students. Furthermore, the
"instructor" directory contains a file called "homework", and each directory under
"students" has a file called "solution".

Figure 4 shows a PCAL program that does the following. It navigates into the
"instructor" directory, and copies the "homework" file into each directory under
"students" in turn. Then, it navigates into those directories and copies the "solution"
file of that student into the corresponding directory under "instructor".

Next, we show the policy in effect. The policy is written in the authorization logic
BL [15, 16]. In order to represent policies made by different principals, BL includes a
modality A says s which means that administrator A states, or believes formula s (s
usually expresses a policy rule). The says modality has been considered in prior work
(e.g., [1, 2, 17, 21]), but the inference rules defining its meaning vary. BL’s rules are shown
below. In addition, any complete axiomatization of first-order intuitionistic logic is also
assumed.
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1 courses = "/courses";
2

3 assert (read, courses);
4 for course in courses {
5 assert (read, course);
6 for user in course {
7 test suffix (user, "instructor") {
8 instructor = user;
9 assert (read, instructor);

10 for fileinstr in instructor {
11 test suffix (fileinstr, "homework") {
12 assert (read, fileinstr);
13 students = course/"students";
14 assert (read, students);
15 for studdir in students {
16 hwstud = studdir/"homework";
17 assert (write, hwstud);
18 shell cp (fileinstr, hwstud)
19 }
20 }
21 }
22 };
23

24 test suffix (user, "students") {
25 assert (read, user);
26 for userdir in user {
27 studname = base (userdir);
28 solninstr = course/"instructor"/studname/"solution";
29 solnstud = userdir/"solution";
30 assert read solnstud;
31 assert write solninstr;
32 shell cp (solnstud, solninstr)
33 }
34 }
35 }
36 }

Figure 4: PCAL program for homework example

` (A says (s⇒ t))⇒ ((A says s)⇒ (A says t)) (K)

` s
` A says s

(N)

` (A says s)⇒ (A′ says A says s) (I)

` A says ((A says s)⇒ s) (C)
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In our specific policy, we assume that S and L are separate authorities. The formula
auth(A, η, t) is defined as S says may(A, η, t); in other words, S represents the enforcer of
the policy. On the other hand, L is a local authority that may certify some formulas that
S relies on, for example, the validity of the "/courses" directory and the membership of
certain principals in special groups for which certain policy rules may apply.

We focus on a detailed modeling of the relationship between the function symbol / (that
concatenates directory paths with file names to to give file paths) and directory membership
constraints. This allows the compiler to reason, for example, that if f is in directory d and
the suffix of f is x then f ≡ d/x. Other rules allow principals in the group special to
inherit read permissions from ancestor directories. Finally, there are rules that are specific
to instructors and students, specifying which files in the others’ directories they are allowed
to read and write.

The policy rules are split into two parts. The first part contains the rules stated by L:

∀c. (S says member(c, "/courses"))⇒ course(c)

special("User")

The next part contains the rules stated by S. These include all the policy rules, plus
rules that model equivalences between paths constructed using /, base, and suffix.

∀f.∀d.∀x. member(f, d)⇒ suffix(f, x)⇒ f ≡ d/x
∀f.∀d.∀x.∀p. member(f, d)⇒ suffix(f, x)⇒ d ≡ p⇒ f ≡ p/x

∀A.∀f.∀p.∀η. f ≡ p⇒may(A, η, f)⇒may(A, η, p)

∀f. suffix(f, base(x))

∀A.∀c.∀d. (L says course(c))⇒may(A, read, c/"instructor")⇒
may(A, read, c/"students")
∧ member(d, c/"students")⇒may(A, write, d/"homework")

∀A.∀c.∀x.∀d. (L says course(c))⇒may(A, read, c/"students"/x)⇒
may(A, write, c/"instructor"/x/"solution")
∧ d ≡ c/"students"/x)⇒may(A, read, d/"solution")

∀A. may(A, read, "/courses")
∀A.∀f.∀d. (L says special(A))⇒ member(f, d)⇒

may(A, read, d)⇒may(A, read, f)

With this policy, the PCAL compiler can eliminate all assert statements in the program
of Figure 4, if the program is run by principal "User".
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